語系/ Language: 繁體中文

Hands-on machine learning with Sciki...
Geron, Aurelien.

 

  • Hands-on machine learning with Scikit-Learn and TensorFlow :concepts, tools, and techniques to build intelligent systems /
  • 紀錄類型: 書目-語言資料,印刷品 : Monograph/item
    正題名/作者: Hands-on machine learning with Scikit-Learn and TensorFlow :/ Aurelien Geron.
    其他題名: concepts, tools, and techniques to build intelligent systems /
    作者: Geron, Aurelien.
    出版者: Beijing ;O'Reilly Media, : c2017.,
    版本: 1st ed.
    面頁冊數: xx, 551 p. :ill. ; : 24 cm.;
    提要註: "Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks--Scikit-Learn and TensorFlow--author Aurelien Geron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started" --
    標題: Machine learning. -
    ISBN: 1491962291 (pbk.)
館藏
  • 1 筆 • 頁數 1 •
 
00380258 後棟2F教師指定參考書區 2F Course Reserves Area (Rear Building) 不流通 一般圖書 (Book) 312.9831 G377 2017 一般使用(Normal) 在架 0
  • 1 筆 • 頁數 1 •
評論
  • 新增評論 分享你的心得,請勿在此評論區張貼涉及人身攻擊、情緒謾罵、或內容涉及非法的不當言論,館方有權利刪除任何違反評論規則之發言,情節嚴重者一律停權,以維護所有讀者的自由言論空間。
Export
取書館別
 
 
變更密碼
登入

請輸入帳號密碼

          (請輸入學號/職號).

      (請輸入學校電子郵件密碼)
.
    本校和附屬機構教職員工生,可透過校務資訊系統【快速登入區】進行登入,不用再認證。

    校內教職員工及學生

    帳號:學號/職號;密碼:本校電子信箱密碼

    附屬機構醫事人員、其他非編制內教職員工

    帳號:職號;密碼:身份證號共10碼,英文字母大寫

    校友及外校實習生

    帳號:借書證上之條碼號;密碼:請點選忘記密碼重新設定

    如有任何問題歡迎洽詢圖書館流通櫃台(分機2133*83;read@kmu.edu.tw),謝謝。

        ~請尊重智慧財產權,勿非法影印~

     Login information for International Students: *Username: Student ID Password: KMU Email Password

     If you have any question, please contact us. (Tel : 07-3121101#2133#83; Email: read@kmu.edu.tw)

     ~Please respect the Intellectual Property Rights, do not use illegal copies of textbooks ~