語系/ Language:
繁體中文
English
KMU OLIS
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Deep learning :a practitioner's appr...
~
Patterson, Josh ((Consultant))
Deep learning :a practitioner's approach /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Deep learning :/ Josh Patterson and Adam Gibson.
其他題名:
a practitioner's approach /
作者:
Patterson, Josh
其他作者:
Gibson, Adam.
出版者:
Sebastopol, CA :O'Reilly, : c2017.,
版本:
1st ed.
面頁冊數:
xxi, 507 p. :ill. ; : 24 cm.;
提要註:
How can machine learning--especially deep neural networks--make a real difference in your organization? This hands-on guide not only provides practical information, but helps you get started building efficient deep learning networks. The authors provide the fundamentals of deep learning--tuning, parallelization, vectorization, and building pipelines--that are valid for any library before introducing the open source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you'll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J.--
標題:
Open source software. -
ISBN:
9781491914250 (pbk.) :
Deep learning :a practitioner's approach /
Patterson, Josh(Consultant)
Deep learning :
a practitioner's approach /Josh Patterson and Adam Gibson. - 1st ed. - Sebastopol, CA :O'Reilly,c2017. - xxi, 507 p. :ill. ;24 cm.
Includes bibliographical references and index.
A review of machine learning -- Foundations of neural networks and deep learning -- Fundamentals of deep networks -- Major architecture of deep networks -- Building deep networks -- Tuning deep networks -- Tuning specific deep network architectures -- Vectorization -- Using deep learning and DL4J on Spark -- What is artificial intelligence? -- RL4J and reinforcement learning -- Numbers everyone should know -- Neural networks and backpropagation: a mathematical approach -- Using the ND4J API -- Using DataVec -- Working with DL4J from source -- Setting up DL4J projects -- Setting up GPUs for DL4J projects -- Troubleshooting DL4J installations.
How can machine learning--especially deep neural networks--make a real difference in your organization? This hands-on guide not only provides practical information, but helps you get started building efficient deep learning networks. The authors provide the fundamentals of deep learning--tuning, parallelization, vectorization, and building pipelines--that are valid for any library before introducing the open source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you'll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J.--
ISBN: 9781491914250 (pbk.) :NT1811
LCCN: 2017277169Subjects--Topical Terms:
319977
Open source software.
LC Class. No.: QA325.5 / .P38 2017
Dewey Class. No.: 006.3/1
Deep learning :a practitioner's approach /
LDR
:02088cam 2200253 a 4500
001
323837
005
20200130143129.0
008
200215s2017 caua b 001 0 eng d
010
$a
2017277169
020
$a
9781491914250 (pbk.) :
$c
NT1811
020
$a
1491914254 (pbk.)
035
$a
(OCoLC)ocn902657832
035
$a
00380240
040
$a
KMU
$d
KMU
042
$a
lccopycat
050
0 0
$a
QA325.5
$b
.P38 2017
082
0 4
$a
006.3/1
$2
23
087
$a
312.9831
$b
P317 2017
100
1
$a
Patterson, Josh
$c
(Consultant)
$3
447694
245
1 0
$a
Deep learning :
$b
a practitioner's approach /
$c
Josh Patterson and Adam Gibson.
250
$a
1st ed.
260
$a
Sebastopol, CA :
$b
O'Reilly,
$c
c2017.
300
$a
xxi, 507 p. :
$b
ill. ;
$c
24 cm.
504
$a
Includes bibliographical references and index.
505
0
$a
A review of machine learning -- Foundations of neural networks and deep learning -- Fundamentals of deep networks -- Major architecture of deep networks -- Building deep networks -- Tuning deep networks -- Tuning specific deep network architectures -- Vectorization -- Using deep learning and DL4J on Spark -- What is artificial intelligence? -- RL4J and reinforcement learning -- Numbers everyone should know -- Neural networks and backpropagation: a mathematical approach -- Using the ND4J API -- Using DataVec -- Working with DL4J from source -- Setting up DL4J projects -- Setting up GPUs for DL4J projects -- Troubleshooting DL4J installations.
520
$a
How can machine learning--especially deep neural networks--make a real difference in your organization? This hands-on guide not only provides practical information, but helps you get started building efficient deep learning networks. The authors provide the fundamentals of deep learning--tuning, parallelization, vectorization, and building pipelines--that are valid for any library before introducing the open source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you'll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J.--
$c
Source other than Library of Congress.
650
0
$a
Open source software.
$3
319977
650
0
$2
96060
$a
Neural networks (Computer science)
$3
233635
650
0
$2
96060
$a
Machine learning.
$3
248498
700
1
$a
Gibson, Adam.
$3
447695
筆 0 讀者評論
全部
前棟3F一般圖書區(圖書館) 3F General Monographic Collections (Front Building)
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
卷號
借閱狀態
預約狀態
備註欄
附件
00380240
前棟3F一般圖書區(圖書館) 3F General Monographic Collections (Front Building)
一般圖書
一般圖書 (Book)
312.9831 P317 2017
一般使用(Normal)
在架
0
預約
1 筆 • 頁數 1 •
1
評論
新增評論
分享你的心得,請勿在此評論區張貼涉及人身攻擊、情緒謾罵、或內容涉及非法的不當言論,館方有權利刪除任何違反評論規則之發言,情節嚴重者一律停權,以維護所有讀者的自由言論空間。
Export
取書館別
處理中
...
變更密碼
登入