語系/ Language:
繁體中文
English
KMU OLIS
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine learning for drug discovery/
~
American Chemical Society.
Machine learning for drug discovery/
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Machine learning for drug discovery/ / Marcelo C.R. Melo, Jacqueline R. M. A. Maasch & Cesar de la Fuente Nunez.
作者:
Melo, Marcelo C.R.,
其他作者:
Fuente Nunez, Cesar de la,
出版者:
Washington, DC, USA: American Chemical Society, : 2022,
提要註:
"Machine Learning for Drug Discovery is designed to suit the needs of graduate students, advanced undergraduates, chemists or biologists otherwise new to this research domain with minimal previous exposure to Machine Learning (ML) methods, or computational scientists with minimal exposure to medicinal chemistry. The e-book covers basic algorithmic theory, data representation methods, and generative modeling at a high level. The authors spotlight antibiotic discovery as a case study in ML for drug development and discuss diverse applications in drug-likeness prediction, antimicrobial resistance, and areas for future inquiry. For a more dynamic learning experience, open-source code demonstrations in Python are included."--
標題:
Drug Evaluation - methods. -
電子資源:
https://er.kmu.edu.tw/user/login/?next=/er/geter/EB000211602/
ISBN:
9780841299238(ebook):
Machine learning for drug discovery/
Melo, Marcelo C.R.,
Machine learning for drug discovery/
Marcelo C.R. Melo, Jacqueline R. M. A. Maasch & Cesar de la Fuente Nunez. - Washington, DC, USA: American Chemical Society, 2022 - ACS in focus,2691-8307. - ACS in focus,.
Includes bibliographical references and index.
Pursuing New Models and Molecules --
"Machine Learning for Drug Discovery is designed to suit the needs of graduate students, advanced undergraduates, chemists or biologists otherwise new to this research domain with minimal previous exposure to Machine Learning (ML) methods, or computational scientists with minimal exposure to medicinal chemistry. The e-book covers basic algorithmic theory, data representation methods, and generative modeling at a high level. The authors spotlight antibiotic discovery as a case study in ML for drug development and discuss diverse applications in drug-likeness prediction, antimicrobial resistance, and areas for future inquiry. For a more dynamic learning experience, open-source code demonstrations in Python are included."--
ISBN: 9780841299238(ebook): NT2900Subjects--Topical Terms:
521167
Drug Evaluation
--methods.
Machine learning for drug discovery/
LDR
:01767nam a2200193 i 4500
001
389459
003
DACS
005
20220311120309.0
008
251103s2022 dcua ob 101 0 eng d
020
$a
9780841299238(ebook):
$c
NT2900
040
$a
KMU
087
0 4
$a
418
$b
M528
100
1
$a
Melo, Marcelo C.R.,
$e
author.
$u
University of Pennsylvania.
$3
521164
245
0 0
$a
Machine learning for drug discovery/
$c
Marcelo C.R. Melo, Jacqueline R. M. A. Maasch & Cesar de la Fuente Nunez.
260
# 1
$a
Washington, DC, USA:
$b
American Chemical Society,
$c
2022
490
1
$a
ACS in focus,
$x
2691-8307
504
$a
Includes bibliographical references and index.
505
0 0
$t
Pursuing New Models and Molecules --
$t
Key Algorithms for Drug Discovery --
$t
Data Representation in Computational Chemistry --
$t
Drug-likeness Prediction --
$t
Antimicrobial Activity Prediction --
$t
Antimicrobial Resistance Prediction --
$t
Generative Deep Learning for Drug Discovery --
$t
Future Directions.
520
#
$a
"Machine Learning for Drug Discovery is designed to suit the needs of graduate students, advanced undergraduates, chemists or biologists otherwise new to this research domain with minimal previous exposure to Machine Learning (ML) methods, or computational scientists with minimal exposure to medicinal chemistry. The e-book covers basic algorithmic theory, data representation methods, and generative modeling at a high level. The authors spotlight antibiotic discovery as a case study in ML for drug development and discuss diverse applications in drug-likeness prediction, antimicrobial resistance, and areas for future inquiry. For a more dynamic learning experience, open-source code demonstrations in Python are included."--
$c
Provided by publisher.
590
$a
American Chemical Society, Machine Learning for Drug Discovery eBooks - 2022 Front Files.
650
1 2
$a
Drug Evaluation
$x
methods.
$3
521167
650
# 0
$2
96060
$a
Medical informatics.
$3
237626
650
# 0
$2
96060
$a
Machine learning.
$3
248498
650
# 0
$a
Drug development
$x
Data processing.
$3
483121
650
# 0
$a
Artificial intelligence
$x
Medical applications.
$3
413438
700
1 #
$a
Fuente Nunez, Cesar de la,
$e
author.
$u
University of Pennsylvania.
$3
521166
700
1 #
$a
Maasch, Jacqueline R. M. A.,
$e
author.
$u
Cornell University.
$3
521165
710
2 #
$2
97100
$a
American Chemical Society.
$3
236335
830
0
$a
ACS in focus,
$x
2691-8307
$3
521128
856
4 #
$u
https://er.kmu.edu.tw/user/login/?next=/er/geter/EB000211602/
筆 0 讀者評論
全部
圖書館
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
卷號
借閱狀態
預約狀態
備註欄
附件
000238EB
圖書館
一般圖書
電子書(Ebook)
EB 418 M528 2022
一般使用(Normal)
在架
0
預約
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得,請勿在此評論區張貼涉及人身攻擊、情緒謾罵、或內容涉及非法的不當言論,館方有權利刪除任何違反評論規則之發言,情節嚴重者一律停權,以維護所有讀者的自由言論空間。
Export
取書館別
處理中
...
變更密碼
登入